PHYS 704 Homework 5

Daniel Padé

March 2, 2016

1. (a) Construct the free-space Green function $G\left(x, y ; x^{\prime}, y^{\prime}\right)$ for twodimensional electrostatics by integrating $1 / R$ with respect to ($z^{\prime}-$ $z)$ between the limits $\pm Z$ where Z is taken to be very large. Show that apart from an inessential constant, the Green function can be written alternately as

$$
\begin{aligned}
G\left(x, y ; x^{\prime}, y^{\prime}\right) & =-\ln \left[\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}\right] \\
& =-\ln \left[\varrho^{2}+\varrho^{\prime 2}-2 \varrho \varrho^{\prime} \cos \left(\phi-\phi^{\prime}\right)\right]
\end{aligned}
$$

Solution. Use the following definitions:

$$
\begin{aligned}
\alpha & :=\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}} \\
u & :=z-z^{\prime}
\end{aligned}
$$

to integrate

$$
\begin{aligned}
\int_{-Z}^{Z} \frac{d u}{\sqrt{\alpha^{2}+u^{2}}} & =\left.\ln \left(\sqrt{\alpha^{2}+u^{2}}+u\right)\right|_{-Z} ^{Z} \\
& =\ln \frac{\sqrt{Z^{2}+\alpha^{2}}+Z}{\sqrt{Z^{2}+\alpha^{2}}-Z} \\
& =\ln \frac{\sqrt{1+\frac{\alpha^{2}}{Z^{2}}}+1}{\sqrt{1+\frac{\alpha^{2}}{Z^{2}}}-1}
\end{aligned}
$$

Expanding to first order in $\frac{\alpha^{2}}{Z^{2}}$ yields

$$
\begin{aligned}
G & =\ln \frac{2+\frac{\alpha^{2}}{2 Z^{2}}}{\frac{\alpha^{2}}{2 Z^{2}}} \\
& =\ln \frac{4 Z^{2}+\alpha^{2}}{\alpha^{2}} \\
& =\ln \left(4 Z^{2}+\alpha^{2}\right)-\ln \alpha^{2} \\
G(Z \gg \alpha) & =\ln 4 Z^{2}-\ln \alpha^{2} \\
\therefore G\left(x, y ; x^{\prime}, y^{\prime}\right) & =-\ln \alpha^{2} \\
& =-\ln \left[\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}\right]
\end{aligned}
$$

Changing to cylindrical coordinates yields

$$
G\left(x, y ; x^{\prime}, y^{\prime}\right)=-\ln \left[\varrho^{2}+\varrho^{\prime 2}-2 \varrho \varrho^{\prime} \cos \left(\phi-\phi^{\prime}\right)\right]
$$

(b) Show explicitly by separation of variables in polar coordinates that the Green function can be expressed as a Fourier series in the azimuthal coordinate,

$$
G=\frac{1}{2 \pi} \sum_{-\infty}^{\infty} e^{i m\left(\phi-\phi^{\prime}\right)} g_{m}\left(\varrho, \varrho^{\prime}\right)
$$

where the radial Green functions satisfy

$$
\frac{1}{\varrho^{\prime}} \frac{\partial}{\partial \varrho^{\prime}}\left(\varrho^{\prime} \frac{\partial g_{m}}{\partial \varrho^{\prime}}\right)-\frac{m^{2}}{\varrho^{\prime 2}} g_{m}=-4 \pi \frac{\delta\left(\varrho-\varrho^{\prime}\right)}{\varrho}
$$

Note that $g_{m}\left(\varrho, \varrho^{\prime}\right)$ for fixed ϱ is a different linear combination of the solutions of the homogenous radial equation (2.68) for $\varrho^{\prime}<\varrho$ and for $\varrho^{\prime}>\varrho$, with a discontinuity of slope at $\varrho^{\prime}=\varrho$ determined by the source delta function
Solution. The defining equations of the greens function

$$
\begin{array}{r}
\int_{\Omega} \nabla^{\prime 2} G\left(\varrho, \phi ; \varrho^{\prime}, \phi^{\prime}\right) \varrho^{\prime} d \varrho^{\prime} d \phi^{\prime}=-4 \pi \\
\nabla^{\prime 2} G\left(\varrho, \phi ; \varrho^{\prime}, \phi^{\prime}\right) \propto \delta\left(\varrho-\varrho^{\prime}\right) \delta\left(\phi-\phi^{\prime}\right)
\end{array}
$$

can be satisfied if

$$
\nabla^{\prime 2} G=-4 \pi \frac{\delta\left(\varrho-\varrho^{\prime}\right) \delta\left(\phi-\phi^{\prime}\right)}{\varrho}
$$

Applying the laplacian to the given expansion yields:

$$
\begin{aligned}
\nabla^{\prime 2} G & =\left[\frac{1}{\varrho^{\prime}} \frac{\partial}{\partial \varrho^{\prime}}\left(\varrho^{\prime} \frac{\partial}{\partial \varrho^{\prime}}\right)-\frac{1}{\varrho^{\prime 2}} \frac{\partial}{\partial \phi^{\prime 2}}\right]\left[\frac{1}{2 \pi} \sum_{-\infty}^{\infty} e^{i m\left(\phi-\phi^{\prime}\right)} g_{m}\left(\varrho, \varrho^{\prime}\right)\right] \\
& =\frac{1}{2 \pi} \sum_{-\infty}^{\infty}\left[\frac{1}{\varrho^{\prime}} \frac{\partial}{\partial \varrho^{\prime}}\left(\varrho^{\prime} \frac{\partial g_{m}}{\partial \varrho^{\prime}}\right)-\frac{m^{2} g_{m}}{\varrho^{\prime 2}}\right] e^{i m\left(\phi-\phi^{\prime}\right)} \\
& =\frac{1}{2 \pi} \sum_{-\infty}^{\infty}\left[-4 \pi \frac{\delta\left(\varrho-\varrho^{\prime}\right)}{\varrho}\right] e^{i m\left(\phi-\phi^{\prime}\right)} \\
& =-2 \frac{\delta\left(\varrho-\varrho^{\prime}\right)}{\varrho} \sum_{-\infty}^{\infty} e^{i m\left(\phi-\phi^{\prime}\right)} \\
& =-4 \pi \frac{\delta\left(\varrho-\varrho^{\prime}\right) \delta\left(\phi-\phi^{\prime}\right)}{\varrho}
\end{aligned}
$$

Showing that the expansion is correct.
(c) Complete the solution and show that the free-space Green function has the expansion

$$
G\left(\varrho, \phi ; \varrho^{\prime}, \phi^{\prime}\right)=-\ln \left(\varrho_{>}^{2}\right)+2 \sum_{m=1}^{\infty} \frac{1}{m}\left(\frac{\varrho_{<}}{\varrho_{>}}\right)^{m} \cdot \cos \left[m\left(\phi-\phi^{\prime}\right)\right]
$$

where $\varrho_{<}\left(\varrho_{>}\right)$is the smaller (larger) of ϱ and ϱ^{\prime}
Solution. Since $g_{m}\left(\varrho, \varrho^{\prime}\right)=P\left(\varrho, \varrho^{\prime}\right)$ is a solution to the (split) Laplace equation, g_{m} can be given by

$$
g_{m}\left(\varrho, \varrho^{\prime}\right)= \begin{cases}A_{m} \varrho^{\prime m} & \varrho^{\prime}<\varrho \\ B_{m} \varrho^{\prime-m} & \varrho^{\prime}>\varrho\end{cases}
$$

Continuity dictates that

$$
\begin{gathered}
A_{m} \varrho^{m}=B_{m} \varrho^{-m} \\
\therefore A_{m}=\alpha_{m} \varrho^{-m}, \quad B_{m}=\alpha_{m} \varrho^{m}
\end{gathered}
$$

Giving

$$
g_{m}\left(\varrho, \varrho^{\prime}\right)= \begin{cases}\alpha_{m}\left(\frac{\varrho^{\prime}}{\varrho}\right)^{m} & \varrho^{\prime}<\varrho \\ \alpha_{m}\left(\frac{\varrho}{\varrho^{\prime}}\right)^{m} & \varrho^{\prime}>\varrho\end{cases}
$$

The discontinuity in the derivative is determined by the laplace equation for the Green function:

$$
\begin{aligned}
-\frac{4 \pi}{\varrho} & =\left.\frac{d g_{m}}{d \varrho^{\prime}}\right|_{\varrho<}-\left.\frac{d g_{m}}{d \varrho^{\prime}}\right|_{\varrho>} \\
& =-\frac{2 m \alpha_{m}}{\varrho} \\
& \therefore \alpha_{m}=\frac{2 \pi}{m} \\
g_{m}\left(\varrho, \varrho^{\prime}\right) & = \begin{cases}\frac{2 \pi}{m}\left(\frac{\varrho^{\prime}}{\varrho}\right)^{m} & \varrho^{\prime}<\varrho \\
\frac{2 \pi}{m}\left(\frac{\varrho}{\varrho^{\prime}}\right)^{m} & \varrho^{\prime}>\varrho\end{cases} \\
& =\frac{2 \pi}{m}\left(\frac{\varrho_{<}}{\varrho_{>}}\right)^{m}
\end{aligned}
$$

From part a, $g_{0}=-\ln \varrho_{>}^{2}$, so

$$
\begin{aligned}
G\left(\varrho, \varrho^{\prime}\right) & =-\ln \left(\varrho_{>}^{2}\right)+\sum_{m=-\infty, m \neq 0}^{\infty} \frac{1}{|m|}\left(\frac{\varrho_{<}}{\varrho_{>}}\right)^{|m|} e^{i m\left(\phi-\phi^{\prime}\right)} \\
& =-\ln \left(\varrho_{>}^{2}\right)+\sum_{m=1}^{\infty} \frac{1}{m}\left(\frac{\varrho_{<}}{\varrho_{>}}\right)^{m} e^{-i m\left(\phi-\phi^{\prime}\right)}+\sum_{m=1}^{\infty} \frac{1}{m}\left(\frac{\varrho_{<}}{\varrho_{>}}\right)^{m} e^{i m\left(\phi-\phi^{\prime}\right)} \\
& =-\ln \left(\varrho_{>}^{2}\right)+\sum_{m=1}^{\infty} \frac{1}{m}\left(\frac{\varrho_{<}}{\varrho_{>}}\right)^{m}\left(e^{-i m\left(\phi-\phi^{\prime}\right)}+e^{i m\left(\phi-\phi^{\prime}\right)}\right) \\
& =-\ln \left(\varrho_{>}^{2}\right)+2 \sum_{m=1}^{\infty} \frac{1}{m}\left(\frac{\varrho_{<}}{\varrho_{>}}\right)^{m} \cos \left[m\left(\phi-\phi^{\prime}\right)\right]
\end{aligned}
$$

Where the absolute values preserve the relations on $\varrho_{>}, \varrho_{<}$
2. Two dimensional electric quadrupole focusing fields for particle accelerators can be modeled by a set of four symmetrically placed line charges, with linear charge densities $\pm \lambda$ as shown in the left hand figure (the right-hand figure shows the electric field lines)

The charge density in two dimensions can be expressed as

$$
\sigma(\varrho, \phi)=\frac{\lambda}{a} \sum_{n=0}^{3}(-1)^{n} \delta(\varrho-a) \delta\left(\phi-\frac{n \pi}{2}\right)
$$

(a) Using the Green function expansion from Problem 2.17c, show that the electrostatic potential is

$$
\Phi(\varrho, \phi)=\frac{\lambda}{\pi \epsilon_{0}} \sum_{k=0}^{\infty} \frac{1}{2 k+1}\left(\frac{\varrho_{<}}{\varrho_{>}}\right)^{4 k+2} \cos [(4 k+2) \phi]
$$

Solution.

$$
\begin{aligned}
\Phi(\varrho, \phi) & =\frac{1}{4 \pi \epsilon_{0}} \int_{\Omega} \sigma\left(\varrho^{\prime}, \phi^{\prime}\right) G\left(\varrho, \phi ; \varrho^{\prime}, \phi^{\prime}\right) \varrho d \varrho d \phi \\
& =\frac{\lambda}{4 \pi \epsilon_{0}} \sum_{n=0}^{3}(-1)^{n}\left\{-\ln \left(\varrho_{>}^{2}\right)+2 \sum_{m=1}^{\infty} \frac{1}{m}\left(\frac{\varrho_{<}}{\varrho_{>}}\right)^{m} \cos \left[m\left(\phi-\frac{n \pi}{2}\right)\right]\right\} \\
& =\frac{\lambda}{2 \pi \epsilon_{0}} \sum_{m=1}^{\infty} \frac{1}{m}\left(\frac{\varrho_{<}}{\varrho_{>}}\right)^{m} \sum_{n=0}^{3}(-1)^{n} \cos \left[m\left(\phi-\frac{n \pi}{2}\right)\right]
\end{aligned}
$$

Since the \ln term cancels after summing over n Expanding the second sum yields:

$$
\begin{aligned}
\sum_{n=0}^{3}(-1)^{n} & \cos \left[m\left(\phi-\frac{n \pi}{2}\right)\right] \\
& =\cos (m \phi)-\cos \left(m \phi-\frac{m \pi}{2}\right)+\cos (m \phi-m \pi)-\cos \left(m \phi-\frac{3 m \pi}{2}\right) \\
& =\cos (m \phi)-\cos (m \phi) \cos \left(\frac{m \pi}{2}\right)+\sin (m \phi) \sin \left(\frac{m \pi}{2}\right)+\cdots
\end{aligned}
$$

The first two terms show that m must be a multiple of 2 , and the second two show that it must be an odd multiple of 2 (otherwise the sum is 0):

$$
\begin{gathered}
\sum_{n=0}^{3}(-1)^{n} \cos \left[m\left(\phi-\frac{n \pi}{2}\right)\right]=2 \cos (m \phi) \\
\text { for } m=2(2 k+1)=4 k+2 \\
\Phi(\varrho, \phi)=\frac{\lambda}{\pi \epsilon_{0}} \sum_{k=0}^{\infty} \frac{1}{2 k+1}\left(\frac{\varrho_{<}}{\varrho_{>}}\right)^{4 k+2} \cos [(4 k+2) \phi]
\end{gathered}
$$

(b) Relate the solution of part a to the real part of the complex function

$$
w(z)=\frac{2 \lambda}{4 \pi \epsilon_{0}} \ln \left[\frac{(z-i a)(z+i a)}{(z-a)(z+a)}\right]
$$

where $z=x+i y=\varrho e^{i \phi}$. Comment on the connection to Problem 2.3

Solution.

$$
\begin{aligned}
\Phi(\varrho, \phi) & =\frac{\lambda}{\pi \epsilon_{0}} \sum_{k=0}^{\infty} \frac{1}{2 k+1}\left(\frac{\varrho_{<}}{\varrho_{>}}\right)^{4 k+2} \cos [(4 k+2) \phi] \\
& =\Re\left\{\frac{2 \lambda}{\pi \epsilon_{0}} \sum_{k=0}^{\infty} \frac{1}{4 k+2}\left(\frac{\varrho_{<}}{\varrho_{>}} e^{i \phi}\right)^{4 k+2}\right\}
\end{aligned}
$$

Since

$$
\begin{aligned}
& \sum_{n \text { odd }} \frac{Z^{n}}{n}=\frac{1}{2} \ln \left(\frac{1+Z}{1-Z}\right) \\
& \Rightarrow \Phi(\varrho, \phi)=\frac{\lambda}{2 \pi \epsilon_{0}} \Re\left\{\ln \left[\frac{1+\left(\frac{\varrho_{>}}{\varrho_{<}} e^{i \phi}\right)^{2}}{1-\left(\frac{\varrho_{>}}{\varrho_{<}} e^{i \phi}\right)^{2}}\right]\right\} \\
& =\frac{\lambda}{2 \pi \epsilon_{0}} \Re\left\{\ln \left[\frac{\left(1+i \frac{\varrho_{>}}{\varrho_{<}} e^{i \phi}\right)\left(1-i \frac{\varrho_{>}}{\varrho_{<}} e^{i \phi}\right)}{\left(1+\frac{\varrho_{>}}{\varrho_{<}} e^{i \phi}\right)\left(1-\frac{\varrho_{>}}{\varrho_{<}} e^{i \phi}\right)}\right]\right\}
\end{aligned}
$$

The interior solution has $\varrho_{<}=\varrho$ and $\varrho_{>}=a$ so the solution becomes

$$
\begin{aligned}
\Phi(\varrho, \phi) & =\frac{\lambda}{2 \pi \epsilon_{0}} \Re\left\{\ln \left[\frac{\left(\varrho+i a e^{i \phi}\right)\left(\varrho-i a e^{i \phi}\right)}{\left(\varrho+a e^{i \phi}\right)\left(\varrho-a e^{i \phi}\right)}\right]\right\} \\
& =\Re[w(\varrho)]
\end{aligned}
$$

The exterior solution has $\varrho_{>}=\varrho$ and $\varrho_{<}=a$ so the solution becomes

$$
\Phi(\varrho, \phi)=\frac{\lambda}{2 \pi \epsilon_{0}} \Re\left\{\ln \left[\frac{\left(i \varrho+a e^{i \phi}\right)\left(i \varrho-a e^{i \phi}\right)}{\left(\varrho+a e^{i \phi}\right)\left(\varrho-a e^{i \phi}\right)}\right]\right\}
$$

Multiply the fraction by i^{2} to obtain $\Phi=\Re[w(\varrho)]$
This is related to problem 2.3 since that problem can be solved with the original line charge and 3 image charges, corresponding to the 4 line charges surrounding the accelerator. Simply take one of the line charges to be at $\left(x_{0}, y_{0}\right)$ where $x_{0}=y_{0}$
(c) Find expressions for the Cartesian components of the electric field near the origin, expressed in terms of x and y . Keep the $k=0$ and $k=1$ terms in the expansion. For $y=0$ what is the relative magnitude of the $k=1$ (2^{6}-pole) contribution to E_{x} compared to the $k=0$ (2^{2}-pole or quadrupole) term?
Solution. The Cartesian components of the electric field are given by

$$
\begin{aligned}
& E_{x}=-\cos \theta \frac{\partial \Phi}{\partial \varrho}+\frac{\sin \theta}{\varrho} \frac{\partial \Phi}{\partial \phi} \\
& E_{y}=-\sin \theta \frac{\partial \Phi}{\partial \varrho}-\frac{\cos \theta}{\varrho} \frac{\partial \Phi}{\partial \phi}
\end{aligned}
$$

For $\varrho<a$ we have

$$
\begin{aligned}
\frac{\partial \Phi}{\partial \varrho} & =\frac{2 \lambda}{a \pi \epsilon_{0}} \sum_{k=0}^{\infty}\left(\frac{\varrho}{a}\right)^{4 k+1} \cos [\phi(4 k+2)] \\
\frac{1}{\varrho} \frac{\partial \Phi}{\partial \phi} & =-\frac{2 \lambda}{a \pi \epsilon_{0}} \sum_{k=0}^{\infty}\left(\frac{\varrho}{a}\right)^{4 k+1} \sin [\phi(4 k+2)]
\end{aligned}
$$

Substituting into the original expressions for the components of E:

$$
\begin{aligned}
E_{x} & =-\frac{2 \lambda}{a \pi \epsilon_{0}} \sum_{k=0}^{\infty}\left(\frac{\varrho}{a}\right)^{4 k+1}\{\cos [\phi(4 k+2)] \cos \phi+\sin [\phi(4 k+2)] \sin \phi\} \\
& =\frac{2 \lambda}{a \pi \epsilon_{0}} \sum_{k=0}^{\infty}\left(\frac{\varrho}{a}\right)^{4 k+1} \cos [\phi(4 k+1)] \\
E_{y} & =-\frac{2 \lambda}{a \pi \epsilon_{0}} \sum_{k=0}^{\infty}\left(\frac{\varrho}{a}\right)^{4 k+1}\{-\sin \phi \cos [\phi(4 k+2)]-\cos \phi \sin [\phi(4 k+2)]\} \\
& =\frac{2 \lambda}{a \pi \epsilon_{0}} \sum_{k=0}^{\infty}\left(\frac{\varrho}{a}\right)^{4 k+1} \sin [\phi(4 k+3)]
\end{aligned}
$$

Up to $\mathrm{k}=1$, this yields:

$$
\begin{aligned}
& E_{x}=\frac{2 \lambda}{a \pi \epsilon_{0}}\left[\frac{\varrho}{a} \cos \phi+\left(\frac{\varrho}{a}\right)^{5} \cos 5 \phi\right] \\
& E_{y}=\frac{2 \lambda}{a \pi \epsilon_{0}}\left[\frac{\varrho}{a} \sin 3 \phi+\left(\frac{\varrho}{a}\right)^{5} \sin 7 \phi\right]
\end{aligned}
$$

For $y=0, \phi=0, \pi$:

$$
E_{x}= \pm \frac{2 \lambda}{a \pi \epsilon_{0}}\left[\frac{\varrho}{a} \pm\left(\frac{\varrho}{a}\right)^{5}\right]
$$

The relative strength of the $k=0$ and $k=1$ terms is ϱ^{4}

