
PHYS 704
Homework 5

Daniel Padé

March 2, 2016

1. (a) Construct the free-space Green function G(x, y;x′, y′) for two-
dimensional electrostatics by integrating 1/R with respect to (z′−
z) between the limits ±Z where Z is taken to be very large. Show
that apart from an inessential constant, the Green function can
be written alternately as

G(x, y;x′, y′) = − ln
[
(x− x′)2

+ (y − y′)2
]

= − ln
[
%2 + %′2 − 2%%′ cos(φ− φ′)

]
Solution. Use the following definitions:

α :=

√
(x− x′)2 + (y − y′)2

u := z − z′

to integrate ∫ Z

−Z

du√
α2 + u2

= ln
(√

α2 + u2 + u
)∣∣∣∣Z
−Z

= ln

√
Z2 + α2 + Z√
Z2 + α2 − Z

= ln

√
1 + α2

Z2 + 1√
1 + α2

Z2 − 1
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Expanding to first order in α2

Z2 yields

G = ln
2 + α2

2Z2

α2

2Z2

= ln
4Z2 + α2

α2

= ln
(
4Z2 + α2

)
− lnα2

G(Z � α) = ln 4Z2 − lnα2

∴ G(x, y;x′, y′) = − lnα2

= − ln
[
(x− x′)2

+ (y − y′)2
]

Changing to cylindrical coordinates yields

G(x, y;x′, y′) = − ln
[
%2 + %′2 − 2%%′ cos(φ− φ′)

]
(b) Show explicitly by separation of variables in polar coordinates

that the Green function can be expressed as a Fourier series in
the azimuthal coordinate,

G =
1

2π

∞∑
−∞

eim(φ−φ′)gm(%, %′)

where the radial Green functions satisfy

1

%′
∂

∂%′

(
%′
∂gm
∂%′

)
− m2

%′2
gm = −4π

δ(%− %′)
%

Note that gm(%, %′) for fixed % is a different linear combination of
the solutions of the homogenous radial equation (2.68) for %′ < %
and for %′ > %, with a discontinuity of slope at %′ = % determined
by the source delta function

Solution. The defining equations of the greens function∫
Ω

∇′2G(%, φ; %′, φ′)%′d%′dφ′ = −4π

∇′2G(%, φ; %′, φ′) ∝ δ(%− %′)δ(φ− φ′)
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can be satisfied if

∇′2G = −4π
δ(%− %′)δ(φ− φ′)

%

Applying the laplacian to the given expansion yields:

∇′2G =

[
1

%′
∂

∂%′

(
%′
∂

∂%′

)
− 1

%′2
∂

∂φ′2

][
1

2π

∞∑
−∞

eim(φ−φ′)gm(%, %′)

]

=
1

2π

∞∑
−∞

[
1

%′
∂

∂%′

(
%′
∂gm
∂%′

)
− m2gm

%′2

]
eim(φ−φ′)

=
1

2π

∞∑
−∞

[
−4π

δ(%− %′)
%

]
eim(φ−φ′)

= −2
δ(%− %′)

%

∞∑
−∞

eim(φ−φ′)

= −4π
δ(%− %′)δ(φ− φ′)

%

Showing that the expansion is correct.

(c) Complete the solution and show that the free-space Green function
has the expansion

G(%, φ; %′, φ′) = − ln(%2
>) + 2

∞∑
m=1

1

m

(
%<
%>

)m
· cos [m(φ− φ′)]

where %< (%>) is the smaller (larger) of % and %′

Solution. Since gm(%, %′) = P (%, %′) is a solution to the (split)
Laplace equation, gm can be given by

gm(%, %′) =

{
Am%

′m %′ < %

Bm%
′−m %′ > %

Continuity dictates that

Am%
m = Bm%

−m

∴ Am = αm%
−m, Bm = αm%

m
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Giving

gm(%, %′) =


αm

(
%′

%

)m
%′ < %

αm

(
%

%′

)m
%′ > %

The discontinuity in the derivative is determined by the laplace
equation for the Green function:

−4π

%
=
dgm
d%′

∣∣∣∣
%<

− dgm
d%′

∣∣∣∣
%>

= −2mαm
%

∴ αm =
2π

m

gm(%, %′) =


2π

m

(
%′

%

)m
%′ < %

2π

m

(
%

%′

)m
%′ > %

=
2π

m

(
%<
%>

)m
From part a, g0 = − ln %2

>, so

G(%, %′) = − ln(%>
2) +

∞∑
m=−∞,m 6=0

1

|m|

(
%<
%>

)|m|
eim(φ−φ′)

= − ln(%>
2) +

∞∑
m=1

1

m

(
%<
%>

)m
e−im(φ−φ′) +

∞∑
m=1

1

m

(
%<
%>

)m
eim(φ−φ′)

= − ln(%>
2) +

∞∑
m=1

1

m

(
%<
%>

)m (
e−im(φ−φ′) + eim(φ−φ′)

)
= − ln(%>

2) + 2
∞∑
m=1

1

m

(
%<
%>

)m
cos [m(φ− φ′)]

Where the absolute values preserve the relations on %>, %<
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2. Two dimensional electric quadrupole focusing fields for particle acceler-
ators can be modeled by a set of four symmetrically placed line charges,
with linear charge densities ±λ as shown in the left hand figure (the
right-hand figure shows the electric field lines)

−λ

−λ

+λ +λ•

•

•

•

a

The charge density in two dimensions can be expressed as

σ(%, φ) =
λ

a

3∑
n=0

(−1)nδ(%− a)δ
(
φ− nπ

2

)
(a) Using the Green function expansion from Problem 2.17c, show

that the electrostatic potential is

Φ(%, φ) =
λ

πε0

∞∑
k=0

1

2k + 1

(
%<
%>

)4k+2

cos [(4k + 2)φ]
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Solution.

Φ(%, φ) =
1

4πε0

∫
Ω

σ(%′, φ′)G(%, φ; %′, φ′)%d%dφ

=
λ

4πε0

3∑
n=0

(−1)n
{
− ln(%2

>) + 2
∞∑
m=1

1

m

(
%<
%>

)m
cos
[
m(φ− nπ

2
)
]}

=
λ

2πε0

∞∑
m=1

1

m

(
%<
%>

)m 3∑
n=0

(−1)n cos
[
m(φ− nπ

2
)
]

Since the ln term cancels after summing over n
Expanding the second sum yields:

3∑
n=0

(−1)n cos
[
m(φ− nπ

2
)
]

= cos(mφ)− cos
(
mφ− mπ

2

)
+ cos (mφ−mπ)− cos

(
mφ− 3mπ

2

)
= cos(mφ)− cos(mφ) cos

(mπ
2

)
+ sin(mφ) sin

(mπ
2

)
+ · · ·

The first two terms show that m must be a multiple of 2, and the
second two show that it must be an odd multiple of 2 (otherwise
the sum is 0):

3∑
n=0

(−1)n cos
[
m(φ− nπ

2
)
]

= 2 cos(mφ)

for m = 2(2k + 1) = 4k + 2

Φ(%, φ) =
λ

πε0

∞∑
k=0

1

2k + 1

(
%<
%>

)4k+2

cos [(4k + 2)φ]

(b) Relate the solution of part a to the real part of the complex func-
tion

w(z) =
2λ

4πε0
ln

[
(z − ia)(z + ia)

(z − a)(z + a)

]
where z = x+ iy = %eiφ. Comment on the connection to Problem
2.3
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Solution.

Φ(%, φ) =
λ

πε0

∞∑
k=0

1

2k + 1

(
%<
%>

)4k+2

cos [(4k + 2)φ]

= <

{
2λ

πε0

∞∑
k=0

1

4k + 2

(
%<
%>
eiφ
)4k+2

}
Since ∑

n odd

Zn

n
=

1

2
ln

(
1 + Z

1− Z

)

⇒ Φ(%, φ) =
λ

2πε0
<

ln


1 +

(
%>
%<
eiφ
)2

1−
(
%>
%<
eiφ
)2




=
λ

2πε0
<

ln


(

1 + i
%>
%<
eiφ
)(

1− i%>
%<
eiφ
)

(
1 +

%>
%<
eiφ
)(

1− %>
%<
eiφ
)



The interior solution has %< = % and %> = a so the solution
becomes

Φ(%, φ) =
λ

2πε0
<

{
ln

[(
%+ iaeiφ

) (
%− iaeiφ

)
(%+ aeiφ) (%− aeiφ)

]}
= < [w(%)]

The exterior solution has %> = % and %< = a so the solution
becomes

Φ(%, φ) =
λ

2πε0
<

{
ln

[(
i%+ aeiφ

) (
i%− aeiφ

)
(%+ aeiφ) (%− aeiφ)

]}
Multiply the fraction by i2 to obtain Φ = < [w(%)]
This is related to problem 2.3 since that problem can be solved
with the original line charge and 3 image charges, corresponding
to the 4 line charges surrounding the accelerator. Simply take one
of the line charges to be at (x0, y0) where x0 = y0
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(c) Find expressions for the Cartesian components of the electric field
near the origin, expressed in terms of x and y. Keep the k = 0
and k = 1 terms in the expansion. For y = 0 what is the relative
magnitude of the k = 1 (26-pole) contribution to Ex compared to
the k = 0 (22-pole or quadrupole) term?

Solution. The Cartesian components of the electric field are given
by

Ex = − cos θ
∂Φ

∂%
+

sin θ

%

∂Φ

∂φ

Ey = − sin θ
∂Φ

∂%
− cos θ

%

∂Φ

∂φ

For % < a we have

∂Φ

∂%
=

2λ

aπε0

∞∑
k=0

(%
a

)4k+1

cos [φ(4k + 2)]

1

%

∂Φ

∂φ
= − 2λ

aπε0

∞∑
k=0

(%
a

)4k+1

sin [φ(4k + 2)]

Substituting into the original expressions for the components of
E:

Ex = − 2λ

aπε0

∞∑
k=0

(%
a

)4k+1

{cos [φ (4k + 2)] cosφ+ sin [φ (4k + 2)] sinφ}

=
2λ

aπε0

∞∑
k=0

(%
a

)4k+1

cos [φ (4k + 1)]

Ey = − 2λ

aπε0

∞∑
k=0

(%
a

)4k+1

{− sinφ cos [φ (4k + 2)]− cosφ sin [φ (4k + 2)]}

=
2λ

aπε0

∞∑
k=0

(%
a

)4k+1

sin [φ (4k + 3)]

Up to k = 1, this yields:

Ex =
2λ

aπε0

[
%

a
cosφ+

(%
a

)5

cos 5φ

]
Ey =

2λ

aπε0

[
%

a
sin 3φ+

(%
a

)5

sin 7φ

]
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For y = 0, φ = 0, π:

Ex = ± 2λ

aπε0

[
%

a
±
(%
a

)5
]

The relative strength of the k = 0 and k = 1 terms is %4

9


